2011 Generic Stacking Order Loss Factors # **SEPTEMBER 13, 2010** | | Name | Signature | Date | |--------------|---------------------------|-----------|---------------| | Prepared by: | Ryan Fehr, EIT. | man tra | Sept 13 2010 | | Approved by: | Ashikur Bhuiya,
P.Eng. | Leg | Sep 13, 2010 | | Approved by: | John Esaiw, | | - Sint 13 201 | APEGGA Permit to Practice P-8200 ## **TABLE OF CONTENTS** | 1.0 | PURPOSE | 3 | |-----|-----------------------------|---| | 2.0 | INTRODUCTION | 3 | | 3.0 | BACKGROUND | 4 | | 4.0 | 2011 GSO KEY FEATURES | 5 | | 5.0 | 2011 GENERIC STACKING ORDER | 8 | ## 1.0 Purpose The purpose of this document is to describe the 2011 Generic Stacking Order as the order applies to the loss factor calculation. ### 2.0 Introduction The Generic Stacking Order (GSO) is a key component in the loss factor calculation, operational forecasts, planning studies, and General Tariff Application process. Generators are dispatched to meet system demand in the base cases according to the order and generation amount specified in the GSO. The loss factor GSO contains two key pieces of information - Generation supply levels on a net-to-grid basis (NTG) for 12 seasonal cases¹ (four seasons and three load levels as defined below) for all generators, and | Season | Timeframe | Scenario | |--------|----------------------------------|----------| | | | High | | Winter | December, 2010 – February, 2011 | Medium | | | | Low | | | | High | | Spring | March, 2011 – May, 2011 | Medium | | | | Low | | | | High | | Summer | June, 2011 – August, 2011 | Medium | | | | Low | | | | High | | Fall | September, 2011 – November, 2011 | Medium | | | | Low | 2. Generation dispatch order. The Rule governing the determination of the GSO generation supply levels can be located at www.aeso.ca > Rules & Procedures > ISO Rules > Current Rules. In summary, the generation supply levels are determined using ¹ Loss Factor base cases are relevant to NTG amount whereas operations and planning security base cases use more detailed modeling of the system including the behind the fence elements. historical data for existing generators (in service for more than a year). For generators that have been in service for less than one year, data provided by the owner or the supply levels are estimated by the Incapability Factors or by a combination of actual data and the Incapability Factors. To determine dispatch order, a statistical analysis is used to determine a relationship between the generator output and the actual historical hourly pool price. The process is explained in 'Section 4.0. The AESO will request annually from generation owners confirmation that the previous year's historical data is appropriate to use. Additional blocks are used where necessary to reflect generators' multiple bidding strategies. The TMR requirement (please refer to www.aeso.ca > Rules and Procedures > Current Operating Policies and Procedures > ISO Operating Policies and Procedures for details) supersedes all other operational criteria and hence TMR generators are dispatched first on the list when required to fulfill the reliability criteria. ### 3.0 Background In 2006, the AESO began utilizing a new methodology, 50% Area Load Corrected R-Matrix, for the determination of generator and opportunity service loss factors. The methodology reflects the requirements Transmission Regulation. The regulation AR 86/2007 with amendments up to and including AR 255/2007 indicates loss factors must be calculated from the average impact of generators on the Alberta Interconnected Electric System (AIES). The regulation directed the AESO to implement a new methodology to meet these requirements. The AESO has consulted with stakeholders in the development of the loss factor methodology including the development of rules for the preparation of the GSO. Prior to 2006, GSO's used generators STS contract levels as capacity amounts. Moving to a one year historical generation basis as was done in 2006 has several advantages, including; - Amounts of actual generator energy market dispatch representative for the previous year - Addresses the issue of confidentiality of maintenance data by including actual maintenance and forced outages from the previous period - ◆ Treats all facilities on the same basis - Reduces necessity for the AESO to forecast generator / pool price relationships ### 4.0 2011 GSO Key Features The highlights of the 2011 GSO preparation process are; - 1. Average historical net-to-grid (NTG) output of a generator is considered for each of the twelve seasonal cases. - 2. The determination of TMR and the energy component is done using SCADA data. The historical TMR instruction amount as dispatched by the system controller is used as the TMR amount. The difference between the total SCADA amount and the TMR instruction amount is used as the energy component. For example, if TMR instruction is 25 MW and the actual amount is 45 MW then the TMR amount will be 25 MW and the energy component will be 20 MW. - Generator owners are provided an opportunity to comment on and suggest revisions to the GSO capacities to correct calculation errors by the AESO on historical data or proposed operational characteristics on new generation. - 4. The net of import and export (separately for BC, and Saskatchewan) is shown in the GSO only if the net is import. If the net is export the GSO shows zero for the scenario. The net import (if any) is added at the end of the 2nd block of Hydro. If the net is export then it will be reflected in the loss factor base cases. The DOS loads will be reflected in the loss factor base cases. - 5. The numbers of hours (H values) used for averaging the historical generator output are taken from the AIES seasonal load duration curve analysis (Please see Appendix 6 of the AESO Rules). - No maintenance or outage data is used in the 2011 GSO as average historical net-to-grid output of a generator inherently contains this information. - 7. 12 seasonal net-to-grid generations are assigned to each individual generator at the point of supply (POS). - The order except for units such as wind, import, and hydro generation is determined by the actual price responsiveness of the generators in each group. - 9. New generators expected to be connected in the forecast year will be included in the GSO. These are generators with signed contracts to connect or who have made significant financial commitments to connect. Generators who have filed decommissioning plans with the AESO will be removed accordingly. - AESO typically relies on an operating profile submitted by the generator owner. In the event this information has not been provided the AESO will rely on the Canadian Electricity Association's (CEA) latest annual report on Generation Equipment Status utilizing The incapability factors (ICBF) to calculate the power available to the AIES. (1- ICBF) has been considered as equivalent to Available Capacity Factors (ACF). - 10. The 2011 GSO considers the NTG amount at the point of supply (POS). Since any given loss factor is primarily the function of net to grid amount of generation, the 2011 GSO represents an aggregate of generation at the point of supply. An equivalent generator is considered at the bus from which the NTG amount related to the Measurement Point Identification (MPID) is obtained. For example, Horseshoe has 4 generators with a single MPID which is HSH. The 4 generators are connected to Bus 172 (12 kV). They are represented as a single unit at Bus 171 (138 kV) because the AESO billing database contains NTG data for all of these four units (related to MPID HSH) at Bus 171. The same approach is applied to the Industrial System Designations (ISD). All ISDs are represented by a single equivalent generator and load. The GSO contains a column with bus numbers for corresponding MPIDs. 11. An energy stacking order is created for all generation units based on lowest operating cost for units of the same fuel type using the current unit's loss factor. Each generator's hourly bidding prices and associated generation MW changes are combined and sorted as a multi-block stacking order for that generation unit for the 12 months period. The generation unit is then divided into two blocks. Two blocks are chosen to avoid additional complexity for limited modeling improvement. A statistical analysis is applied to define the first and second blocks from its multi-block stacking order. A low end price with the highest occurring percentage in the 12 months period is selected as the first block. Its block size is defined as the average size based on occurrence. Generation volumes above the first bock size belong to the second block. This block price is defined by using weighted average of all the prices above the first block. The weighted factor is generation MW changes at each price and its percentage in history. The second block size is calculated by averaging of all blocks above the first block. However, not all generators have a 2nd block. The statistical analysis shows that some generators have an insignificant amount of generation in the 2nd block which indicates their price insensitivity. A weighted average of generator output of 12 seasonal outputs is calculated based on the H values or duration of the scenarios. A second block for a generator is considered, in general, if the weighted average is equal to or more than 5 MW. In some cases the second block is not assigned to a generator even though the weighted average is more than 5 MW such as for SPR&D or Wind generators. The price response analysis used to construct the GSO is consistent with the losses forecast as filed with the AESO's General Tariff Application. The 2011 GSO is similar to its predecessors in the following aspects: - The wind and hydro units are ranked according to their relative loss factors. - 2. No bid price, specific TMR, maintenance schedules, or heat rate
information is revealed. - 3. Multiple blocks (two blocks) are used to represent the historical response of the generators to pool price. - 4. The GSO is separated into two blocks (where necessary) and into similar generation technologies (i.e. wind, co-gen, coal, etc) ### 4.1 2010 Important Generator Retirements 1. Wabamum 4 retired on March 31, 2010. ### 5.0 2011 Generic Stacking Order The following describes the application of the GSO to the loss factor base cases: - Transmission Must Run (TMR) generators the generators represent the expected TMR dispatch (of gas, combined cycle, or other units) beyond area generation energy market participation. The TMR units are listed in the AESO OPPs 501, 510 and 521. TMR is required in specific areas of the AIES to meet reliability criteria The total net-to-grid (NTG) amount assigned to the TMR generators in the 2011 GSO is obtained from the following two sources: - a) The average historical TMR total (SCADA) is calculated for 12 seasonal cases in the past twelve months (June 1 2009 to May 31 2010). The AIES seasonal load duration curve analysis is used to obtain the average TMR total amount of each generator. - b) The average TMR instruction amount (as dispatched by the System Controller) is calculated for 12 seasonal cases in the past twelve months (June 1 2009 to May 31 2010). The AIES seasonal load duration curve analysis is used to obtain the average TMR instruction amount for each generator. - According to the OPPs when the area criteria requirement is not met by the generation from local generators through energy market dispatches, TMR dispatches will be issued to TMR-contracted generators to make up the shortfall. TMR-contracted generators will be dispatched according to the TMR dispatch orders. The actual TMR dispatch order is confidential to the AESO. - 2) Data Most of the data used in 2011 GSO such as Alberta system load, hourly pool price and generation amount at each POS are historical and taken from the most recent 12 months' data found in the AESO's billing system. The data extraction period is June 1, 2009 to May 31, 2010. - 3) Dispatch Generator In general, the energy stacking order is formed to more closely reflect an actual operational perspective. The generators may bid multiple blocks but the typical block size beyond the 2nd block is very small. - 4) **Wind Generation** Wind generation does not have a relationship to pool price. - 5) Small Power Research & Development The relative order remains the same as the 2010 GSO. SPR&D generators are exempt by law from paying for losses. - 6) Distribution Connected Generation consists of distribution connected generators with STS contracts who occasionally supplies power to the AIES. Several prime movers may exist at a distribution generation location. The placement of the distribution generation in the stacking order is determined mainly by the predominant source of - generation at the STS location and ranked by historical hourly pool price. - 7) **Preliminary Generation** consists of the generators with preliminary status and placed with the same fuel type group. - 8) Import levels as per the 2007 Transmission Regulation, inter-tie levels are included in the loss factor calculation power flows. Imports are added in the GSO following the second block of hydro generation. The location reflects the relative level of availability of import resources for Alberta. The GSO provides a list of generation or equivalent entity (imports or industrial system designation) along with their predicted seasonal output capacity. Exports are not added in the GSO as they are not supply component of the system. ### 2011 Generic Stacking Order Version 1 - September 13, 2010 | | 2011 Generic Stacking Order Version 1 - September 13, 2010 | | | | | | | | | | | | | | | | |----------------|--|--------------------------------------|--------------------|--------------------|------------------------------|-----------------------------|--------------|--------------|--------------|---------------|------------------------------|---------------|--------------|--------------|--------------|---------------------------| | New GSO Number | Name | MP_ID | Gen with 2nd Block | Generation Type | Winter Peak
Capacity, MW* | Winter Med
Capacity, MW* | | | | Capacity, MW* | Summer Peak
Capacity, MW* | Capacity, MW* | | | | Fall Low
Capacity, MW* | | 1 | RAINBOW 4 | RL1 | 1 | Co-gen | 32.7 | 38.7 | | 27.4 | 32.8 | | | 25.6 | 27.2 | 18.9 | 30.8 | 33.5 | | 2 | RAINBOW 5 | RB5 | 1 | Gas | 24.9 | 20.1 | 14.7 | 14.2 | 14.3 | 12.3 | 17.2 | 14.9 | 10.9 | 17.0 | 16.3 | 12.3 | | 3 | POPLAR HILL | PH1 | 1 | Gas | 1.4 | 1.3 | 0.3 | 0.6 | 0.1 | 0.1 | | 1.4 | 0.0 | 2.0 | 1.2 | | | 4 | VALLEYVIEW | VVW1 | 1 | Gas | 1.5 | 1.1 | 0.3 | 0.0 | 0.1 | | | 0.0 | 0.0 | 0.1 | 0.0 | | | 5 | FORT NELSON | FNG1 | 1 | Gas | 31.8 | 34.5 | | 21.9 | 26.7 | | | 31.7 | 37.1 | 18.5 | 31.2 | | | 6 | BEAR CREEK G1 | BCRK | 1 | Co-Cycle | 19.3 | 10.0 | 1.3 | 1.0 | | | | 0.4 | 0.0 | 6.5 | 0.5 | 0.0 | | 7 | RAINBOW 2 | RB2 | 1 | Gas | 1.6 | | | 1.0 | | | | 3.5 | 0.5 | 0.6 | 1.0 | 1.0 | | 8 | RAINBOW 1 | RB1 | 1 | Gas | 0.0 | 0.0 | | 0.0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 9 | BEAR CREEK G2 | BCR2 | 1 | Co-Cycle | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 10 | NORTHSTONE ELMWORTH | NPC1 | 1 | Co-gen | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 11 | RAINBOW 3 | RB3 | 1 | Gas | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 12 | GRANDE PRAIRIE ECOPOWER CENTRE | GPEC | 1 | Co-gen | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 13 | TABER WIND | TAB1 | | Wind | 17.1 | 19.7 | 23.4 | 25.9 | 30.4 | 32.1 | 3.3 | 15.9 | 21.3 | 35.9 | 32.7 | 35.5 | | 14 | SUNCOR HILLRIDGE WIND FARM
FT MACLEOD | SCR3
0000001511 | | Wind
Wind, DG | 6.5
0.0 | 9.0 | | 12.1 | 12.7 | 14.0 | 1.7 | 7.3 | 7.7 | 15.8 | 14.1 | 15.1 | | 16 | SUNCOR MAGRATH | SCR2 | | Wind, DG
Wind | 6.7 | 9.6 | | 8.5 | 11.7 | 11.5 | 2.5 | 6.0 | 7.0 | 15.1 | 13.1 | 13.2 | | 17 | GLENWOOD | 0000022911 | | Wind, DG | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.2 | 0.5 | 0.0 | 0.1 | 0.3 | | 18 | TAYLOR WIND PLANT | TAY2 | | Wind, DG
Wind | 0.6 | 0.7 | 0.6 | 0.4 | 0.8 | | | 0.2 | 0.3 | 0.0 | 0.1 | 0.5 | | 19 | BLUE TRAIL WIND FARM | BTR1 | | Wind | 12.1 | 16.6 | 17.5 | 10.1 | 20.1 | 19.8 | | 0.0 | 0.0 | 26.3 | 16.7 | 13.1 | | 20 | McBRIDE | AKE1 | | Wind | 17.7 | 24.2 | 23.3 | 21.4 | 27.4 | 24.6 | 6.1 | 13.4 | 15.5 | 38.2 | 33.3 | 29.9 | | 21 | SODERGLEN | GWW1 | | Wind | 17.6 | 24.7 | 23.8 | 18.4 | 26.9 | | | 15.1 | 17.9 | 37.2 | 33.0 | 31.2 | | 22 | PINCHER CREEK | 0000039611 | | Wind, DG | 0.7 | 1.2 | 1.4 | 0.7 | 1.5 | 1.4 | 0.2 | 0.5 | 0.6 | 1.5 | 1.8 | | | 23 | CASTLE RIVER | CR1 | | Wind | 7.9 | 12.4 | 10.8 | 7.8 | 12.3 | 9.5 | 4.9 | 4.8 | 2.3 | 17.4 | 16.6 | | | 24 | KETTLES HILL WIND ENERGY PHASE 2 | KHW1 | | Wind | 14.6 | 21.4 | 20.5 | 15.5 | 22.9 | 18.9 | 7.6 | 11.2 | 10.7 | 29.0 | 28.8 | 24.0 | | 25 | SUMMERVIEW 1 | IEW1 | | Wind | 14.1 | 22.4 | | 15.6 | | | | 10.5 | 11.3 | 32.3 | 27.5 | 21.1 | | 26 | COWLEY EXPANSION 1 | CRE1 | | Wind | 0.1 | 0.2 | | 0.1 | | | | 0.1 | 0.0 | 0.4 | 0.3 | 0.2 | | 27 | COWLEY EXPANSION 2 | CRE2 | | Wind | 0.2 | | | 0.2 | | | | 0.1 | 0.1 | 0.5 | 0.5 | 0.4 | | 28 | COWLEY NORTH | CRE3 | | Wind | 4.6 | 5.8 | | 4.5 | | | | 2.8 | 1.4 | 8.6 | 8.0 | 6.4 | | | COWLEY RIDGE WIND POWER PHASE1 | PKNE | | Wind | 2.1 | 3.3 | | 2.2 | 3.3 | | | 1.5 | 1.0 | 5.0 | 4.4 | 3.6 | | 30 | COWLEY RIDGE WIND POWER PHASE2 | CRWD | | Wind | 1.8
28.4 | 2.9 | 2.5 | 1.8 | | | 1.2 | 1.2 | 0.7 | 4.4
24.0 | 3.8 | 3.0 | | 31 | SUMMERVIEW 2 | IEW2 | - | Wind | | 28.4 | | 9.9 | 14.7 | 12.5 | 16.1 | 16.1 | 16.1 | | | 24.0 | | 32 | TRANSALTA ARDENVILLE WIND FARM GHOST PINE WIND FARM | Project854_1_GEN
Project518 1 SUP | | Wind
Wind | 29.7
33.8 | 29.7
33.8 | 29.7
33.8 | 22.7
25.8 | 22.7
25.8 | 22.7
25.8 | 16.9
19.2 | 16.9
19.2 | 16.9
19.2 | 25.1
28.6 | 25.1
28.6 | 25.1
28.6 | | 34 | ENEL ALBERTA CASTLE ROCK WIND FARM | Project462 1 SUP | | Wind | 0.0 | 0.0 | | 0.0 | | | | 28.7 | 28.7 | 42.7 | 42.7 | 42.7 | | 35 | GREENGATE HALKIRK WIND PROJECT | Project723 1 SUP | - | Wind | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 57.2 | 57.2 | 57.2 | | 36 | WESGEN | WST1 | | Bio-mass | 11.7 | 12.9 | | 12.0 | 13.7 | | | 10.8 | 11.7 | 13.1 | 11.5 | 10.6 | | 37 | WHITE COURT | EAGL | | Bio-mass | 23.6 | 23.2 | 23.0 | 23.1 | 22.1 | 22.9 | 11.9 | 10.8 | 14.8 | 23.8 | 23.9 | 24.0 | | | BRIDGE CREEK | GOC1 | | Gas-decomp | 2.7 | 3.3 | | 3.6 | | | | 2.2 | 2.8 | 2.4 | 3.1 | 3.0 | | 39 | DRAYTON VALLEY PL IPP | DV1 | | Bio-mass | 8.5 | 8.0 | 8.2 | 8.4 | 8.5 | 8.8 | 8.9 | 9.1 | 9.2 | 8.9 | 8.8 | 8.8 | | 40 | BELLY RIVER IPP | BLYR | | Hydro | 0.0 | 0.0 | 0.0 | 0.5 | 0.5 | 0.7 | 2.8 | 2.8 | 2.8 | 0.9 | 1.0 | 1.4 | | 41 | CHIN CHUTE | CHIN | | Hydro | 0.0 | 0.0 | 0.0 | 0.8 | 1.5 | | | 8.8 | 10.3 | 2.0 | 3.4 | | | 42 | DICKSON DAM 1 | DKSN | | Hydro | 4.8 | 4.7 | | 4.0 | 3.9 | | | 10.2 | 12.0 | 6.2 | 5.3 | 5.9 | | | WATER IPP | WTRN | | Hydro | 2.1 | 1.9 | | 1.5 | | | | 1.9 | 1.8 | 2.0 | 1.4 | | | | ST MARY IPP | STMY | | Hydro | 1.2 | | | | | | | 2.3 | 2.3 | 1.4 | 1.4 | | | | RAYMOND RESERVOIR P&G WEYERHAUSER | RYMD
WEY1 | | Hydro | 0.0 | 0.0 | | 1.1 | | 2.2 | | 16.6 | 17.5
0.0 | 3.9 | 5.6 | 7.4 | | | DIASHOWA | DAI1 | | Co-gen | 3.0 | 3.1 | 3.1 | 2.6 | 2.9 | | 2.0 | 2.1 | 1.6 | 2.5 | 1.7 | 7 1.4 | | 48 | CAVAILIER | EC01 | 1 | Co-gen
Co-Cycle | 9.8 | 7.4 | 3.6 | 10.6 | 9.5 | 5.9 | 12.7 | 6.3 | 2.4 | 11.0 | 8.1 | 2.9 | | 49 | CARSELAND | TC01 | 1 | Co-gen | 42.2 | 41.3 | 39.4 | 42.6 | 41.0 | 40.7 | 40.5 | 40.7 | 41.9 | 39.7 | 38.9 | 38.9 | | 50 | BALZAC | NX01 | 1 | Co-Cycle | 42.1 | 36.1 | 31.1 | 51.5 | 44.8 | | 57.7 | 35.3 | 20.2 | 54.4 | 42.6 | 28.2 | | 51 | ALTAGAS PARKLAND | 0000034911 | | Gas, DG | 0.0 | 0.0 | 0.0 |
0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 52 | ENMAX CALGARY ENERGY CENTRE CTG | CES1 | 1 | Co-Cycle | 7.3 | 6.9 | 1.6 | 8.9 | 11.0 | 5.0 | 21.4 | 8.3 | 1.2 | 25.0 | 18.7 | 13.9 | | | ENMAX CALGARY ENERGY CENTRE STG | CES2 | 1 | Co-Cycle | 16.4 | 15.3 | 3.3 | 23.3 | 27.0 | 11.5 | | 20.6 | 3.0 | 64.0 | 45.1 | 33.1 | | | CITY OF MEDICINE HAT | CMH1 | 1 | Gas | 9.2 | 6.2 | | 6.7 | 8.6 | | | 4.8 | 0.4 | 8.4 | 7.4 | 1.6 | | | NOVA JOFFRE | NOVAGEN15M | 1 | Co-gen | 77.1 | 48.5 | | 84.8 | | | 72.2 | 60.0 | 33.3 | 86.1 | 59.1 | 44.9 | | | WAUPISOO | 0000040511 | | Co-gen, DG | 2.7 | 2.6 | 2.3 | 3.0 | 2.9 | | | 0.0 | 0.0 | 2.5 | 1.4 | | | | BUCK LAKE | 0000045411 | | Co-gen, DG | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | SHELL SCOTFORD | SCTG | - | Co-gen | 0.3 | 0.2 | 0.1 | 4.2 | 7.7 | 6.5 | 0.0 | 0.0 | 0.0 | 3.3 | 8.7 | 5.7
12.2 | | 59
60 | REDWATER DOW GTG | TC02
DOWGEN15M | 1 | Co-gen | 13.7
35.2 | 12.8
26.6 | 12.0
12.4 | 11.3
31.4 | 11.1
26.8 | 11.2 | 10.6
23.7 | 11.4
17.7 | 12.1 | 11.9 | 12.0 | | | 61 | PRIMROSE | PR1 | 1 | Co-gen | 35.2
14.9 | 14.8 | 12.4 | 12.2 | 11.3 | | | 14.7 | 16.7 | 10.8 | 24.3 | 11.0 | | | NEXEN OPTI | NX02 | - '- | Co-gen
Co-gen | 59.3 | 65.9 | | 71.1 | 47.2 | | | 43.1 | 39.1 | 47.8 | | 23.2 | | 02 | NEALN OF IT | INAUE | L | oo-gen | 39.3 | 65.8 | 04.0 | /1.1 | 47.2 | 45.2 | 33.9 | 43.1 | 39.1 | 47.0 | 23.7 | 23.6 | | New GSO Number | Name | MP_ID | Gen with 2nd Block | Generation Type | Winter Peak
Capacity, MW* | Winter Med
Capacity, MW* | Winter Low
Capacity, MW* | Spring Peak
Capacity, MW* | Spring Med
Capacity, MW* | Spring Low
Capacity, MW* | Summer Peak
Capacity, MW* | Summer Med
Capacity, MW* | Summer Low
Capacity, MW* | Fall Peak
Capacity, MW* | Fall Med
Capacity, MW | Fall Low
Capacity, MW* | |----------------|------------------------------|-------------------|--------------------|------------------------|------------------------------|-----------------------------|-----------------------------|------------------------------|-----------------------------|-----------------------------|------------------------------|-----------------------------|-----------------------------|----------------------------|--------------------------|---------------------------| | | SYNCRUDE | SCL1 | | Co-gen | 32.3 | 17.0 | 19.8 | | 38.2 | | 7.5 | | 11.4 | 41.2 | | | | | McKAY RIVER | MKRC | 1 | Co-gen | 164.2 | 149.2 | 149.6 | 128.5 | 141.6 | 144.1 | 140.0 | 137.1 | 128.2 | 139.7 | 7 132. | | | 65 | SUNCOR MILLENIUM | SCR1 | 1 | Co-gen | 107.3 | 115.2 | 104.9 | 111.9 | 96.3 | 90.7 | 81.4 | 63.7 | 50.1 | 82.3 | 80. | | | | FOSTER CREEK G1
MUSKEG | EC04
MKR1 | 1 | Co-gen
Co-gen | 36.3
66.3 | 37.4
60.3 | 38.1
43.2 | 32.0
50.8 | 35.5
43.9 | 37.8
9 36.8 | 30.4 | 24.4 | 31.6
31.9 | 16.0
60.1 | 55. | | | 68 | CNRL HORIZON | CNR5 | <u> </u> | Co-gen | 15.1 | 12.2 | 12.2 | 3.8 | 2.8 | | 10.8 | 11.0 | 17.0 | 8.3 | 13. | | | | MAHKESES COLD LAKE | IOR1 | | Co-gen | 50.1 | 48.2 | 47.2 | | 35.9 | | 37.0 | | 43.7 | 39.9 | | | | | CASCADE | CAS | 1 | Hydro | 14.4 | 10.1 | 1.8 | | 5.2 | | | | 0.0 | 11.1 | | | | 71 | SPRAY | SPR | 1 | Hydro | 34.5 | 29.2 | 8.5 | | 21.0 | | 17.8 | | 3.2 | 32.4 | | | | | RUNDLE | RUN | 1 | Hydro | 8.7 | 8.3 | 2.9 | | 7.5 | | | | 1.1 | 9.7 | | | | 73
74 | THREE SISTERS BARRIER | THS
BAR | - | Hydro
Hydro | 0.9
9.1 | 0.6
7.5 | 0.3 | | 0.0
6.7 | | | 0.2
3.9 | 0.0 | 1.0 | | | | | GHOST | GHO | 1 | Hydro | 18.0 | 11.5 | 4.3 | | 11.1 | | 25.1 | 18.3 | 8.5 | 19.1 | | | | | HORSESHOE | HSH | 1 | Hydro | 8.9 | 7.1 | 5.6 | | | | 10.3 | | 10.4 | 8.5 | | | | | KANANASKIS | KAN | 1 | Hydro | 9.0 | 7.3 | 5.5 | 8.1 | 7.0 | 5.6 | 14.3 | 13.7 | 12.9 | 8.8 | 7. | 6.8 | | 78 | POCATERRA | POC | | Hydro | 11.6 | 8.1 | 0.6 | 9.4 | 5.1 | | 3.1 | 0.5 | 0.0 | 10.6 | | | | | BEARSPAW | BPW | 1 | Hydro | 4.4 | 4.5 | 4.6 | | | | | | 10.0 | 4.5 | | | | 80
81 | INTERLAKES
STIRLING | INT
0000006711 | - | Hydro DC | 4.0
0.0 | 2.9 | 0.3 | 2.0 | 0.9 | | 1.2 | 0.4 | 0.0 | 3.9 | | | | | SPRING COULEE | 0000008711 | | Hydro, DG
Hydro, DG | 0.0 | 0.0 | 0.0 | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | | | 83 | TAYLOR HYDRO | TAY1 | | Hydro
Hydro | 0.0 | 0.0 | 0.0 | 1.0 | 0.9 | | 12.4 | 11.9 | 12.8 | 3.1 | | | | | BRAZEAU | BRA | 1 | Hydro | 7.0 | 3.6 | 0.8 | | 3.3 | | 4.6 | 3.1 | 0.4 | 4.9 | | | | | BIGHORN | BIG | 1 | Hydro | 35.8 | 30.3 | 23.0 | 30.1 | 26.0 | 21.3 | 32.0 | 23.2 | 19.0 | 43.3 | 33. | | | | OLDMAN | OMRH | | Hydro | 3.3 | 3.2 | 3.3 | | 10.6 | | 25.7 | 27.4 | 28.1 | 12.1 | 11.: | | | 87 | HR MILNER | HRM | 1 | Coal | 110.4 | 101.5 | 90.6 | | 97.4 | 85.3 | 113.3 | 105.8 | 98.7 | 115.5 | 108. | | | 88
89 | SHEERNESS #1
SHEERNESS #2 | SH1
SH2 | 1 | Coal | 199.0
188.4 | 152.3
190.2 | 135.7
160.6 | 179.8
95.8 | 172.4
117.9 | 146.7 | 202.5 | 156.6
131.6 | 96.5
93.5 | 233.9 | 207. | 3 162.9
6 127.7 | | | BATTLE RIVER #5 | BR5 | 1 | Coal
Coal | 190.0 | 178.0 | 167.4 | 170.6 | 155.7 | 114.8 | 181.4 | 156.9 | 117.0 | 189.5 | 176. | | | | BATTLE RIVER #3 | BR3 | 1 | Coal | 73.0 | 70.0 | 66.2 | 68.4 | 66.8 | | 73.4 | 64.6 | 51.8 | 66.4 | 70. | | | 92 | BATTLE RIVER #4 | BR4 | 1 | Coal | 86.9 | 87.2 | 82.6 | 79.0 | 78.6 | 71.2 | 85.0 | 73.1 | 59.5 | 68.2 | 2 71. | | | 93 | GENESEE 1 | GN1 | 1 | Coal | 190.2 | 191.1 | 182.7 | 202.3 | 190.1 | 187.1 | 197.0 | 196.1 | 188.9 | 139.3 | 147. | 2 155.3 | | 94 | GENESEE 2 | GN2 | 1 | Coal | 197.9 | 198.3 | 197.7 | 157.6 | 149.0 | 127.0 | 192.6 | 192.5 | 178.9 | 185.0 | 187. | | | 95
96 | GENESEE 3
KEEPHILLS #1 | GN3
KH1 | 1 | Coal | 206.6
314.1 | 206.2
319.2 | 205.9 | 211.4 | 190.2
281.9 | 2 188.5
9 273.1 | 209.6
316.0 | 200.5 | 172.2
296.8 | 203.7 | 208. | 4 207.5
1 311.5 | | | KEEPHILLS #1 | KH2 | 1 | Coal
Coal | 314.1 | 307.6 | 299.6 | 305.6 | 303.8 | | 326.6 | 300.0 | 305.0 | 267.3 | 317. | 7 288.6 | | 98 | SUNDANCE #1 | SD1 | 1 | Coal | 225.0 | 222.5 | 202.2 | 197.5 | 202.2 | 188.8 | 217.5 | 205.7 | 183.9 | 188.2 | 2 177. | | | 99 | SUNDANCE #2 | SD2 | 1 | Coal | 151.2 | 161.9 | 157.3 | 186.4 | 172.7 | 163.2 | 171.9 | 160.2 | 148.7 | 185.0 | 178. | 3 177.4 | | | SUNDANCE #3 | SD3 | 1 | Coal | 235.6 | 235.7 | 230.2 | 195.1 | 178.4 | 138.3 | 143.8 | 106.3 | 93.1 | 222.5 | 221. | | | | SUNDANCE #4 | SD4 | 1 | Coal | 324.1 | 307.4 | 291.4 | 194.1 | 142.8 | 130.9 | 347.9 | 250.6 | 184.9 | 225.7 | 7 254. | | | 102 | SUNDANCE #5 | SD5 | 1 | Coal | 283.2
288.3 | 275.6
287.3 | 272.2
287.8 | 306.9
219.9 | 297.5
256.6 | 297.7
254.4 | 150.5 | 156.4
228.2 | 149.4
223.9 | 108.0 | 53. | | | | SUNDANCE #6
HR MILNER | SD6
HRM | 1 2 | Coal
Coal | 19.7 | 18.1 | 16.1 | 19.9 | 256.6 | 15.2 | 242.7 | 18.9 | 17.6 | 20.6 | 5 19.3 | | | | SHEERNESS #1 | SH1 | 2 | Coal | 109.3 | 83.6 | 74.5 | 98.7 | 94.7 | 80.6 | 111.2 | 86.0 | 53.0 | 128.5 | 113. | | | | SHEERNESS #2 | SH2 | 2 | Coal | 156.0 | 157.5 | 133.0 | 79.4 | 97.7 | 95.2 | 140.5 | 109.0 | 77.5 | 158.2 | 137. | 1 105.8 | | | BATTLE RIVER #5 | BR5 | 2 | Coal | 177.7 | 166.5 | 156.7 | 159.7 | 145.7 | 135.3 | 169.7 | 146.8 | 109.4 | 177.3 | 165. | | | | BATTLE RIVER #3 | BR3 | 2 | Coal | 73.4 | 70.5 | 66.6 | 68.9 | 67.3 | 56.0 | 73.9 | 65.1 | 52.2 | 66.8 | | | | | BATTLE RIVER #4 | BR4 | 2 | Coal | 65.4 | 65.6 | 62.1 | 59.5 | 59.2 | | 63.9 | | 44.8 | 51.3 | | | | | GENESEE 1
GENESEE 2 | GN1
GN2 | 2 | Coal
Coal | 177.5
185.0 | 178.3
185.4 | 170.5
184.8 | 188.7
147.3 | 177.4
139.3 | 114.6 | 183.8 | 182.9
180.0 | 176.3
167.2 | 130.0 | 137. | | | | GENESEE 3 | GN3 | 2 | Coal | 233.5 | 233.0 | 232.7 | 238.9 | 214.9 | 213.1 | 236.9 | 226.7 | 194.6 | 230.3 | 235. | 234.5 | | 113 | KEEPHILLS #1 | KH1 | 2 | Coal | 59.9 | 60.8 | 59.8 | 58.2 | 53.7 | 52.1 | 60.2 | 57.2 | 56.6 | 60.7 | 7 60. | | | | KEEPHILLS #2 | KH2 | 2 | Coal | 50.2 | 49.0 | 47.7 | 51.7 | 48.4 | 46.7 | 52.0 | 51.3 | 48.6 | 42.6 | | | | | SUNDANCE #1 | SD1 | 2 | Coal | 27.1 | 26.7 | 24.3 | 23.7 | 24.3 | 22.7 | 26.2 | 24.7 | 22.1 | 22.6 | | | | | SUNDANCE #2 | SD2 | 2 | Coal | 48.1 | 51.5 | 50.0 | 59.3 | 54.9 | | 54.7 | 50.9 | 47.3
27.5 | 58.8 | | 7 56.4
4 59.7 | | | SUNDANCE #3
SUNDANCE #4 | SD3
SD4 | 2 | Coal
Coal | 69.5
14.3 | 69.5
13.6 | 67.9
12.9 | 57.6
8.6 | 52.6
6.3 | 6 40.8
8 5.8 | 42.4 | 31.4 | 27.5
8.2 | 65.6 | 65.4 | | | | SUNDANCE #4
SUNDANCE #5 | SD4
SD5 | 2 | Coal | 78.5 | 76.3 | 75.4 | | | | 41.7 | | 41.4 | 29.9 | | | | | SUNDANCE #6 | SD6 | 2 | Coal | 63.5 | 63.2 | 63.4 | | 56.5 | | 53.4 | | 49.3 | 63.7 | | | | | SUNDANCE 5 UPGRADE | SD5 | | Coal | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 47.7 | 47.7 | 47.7 | 47.7 | 7 47. | 7 47.7 | | | KEEPHILLS #3 | Project_500_1 | | Coal | 182.6 | 182.6 | 182.6 | | 182.6 | | 386.0 | 386.0 | 386.0 | 386.0 | | | | | CASCADE | CAS | 2 | Hydro | 4.8 | 3.4 | 0.6 | | 1.8 | | | 0.1 | 0.0 | 3.8 | | | | | SPRAY
RUNDLE | SPR
RUN | 2 | Hydro
Hydro | 11.0 | 9.3
1.6 | 2.7 | | 6.7
1.5 | | 5.7 | | | 10.3 | | | | 100 GROSTONIC Color Co | New GSO Number | Name | MP_ID | Gen with 2nd Block | Generation Type | Winter Peak
Capacity, MW* | Winter Med
Capacity, MW* | Winter Low
Capacity, MW* | | Spring Low
Capacity, MW* | | Capacity, MW* | Summer Low
Capacity, MW* | | Fall Low
Capacity, MW* |
--|----------------|------|-------|--------------------|-----------------|------------------------------|-----------------------------|-----------------------------|-----|-----------------------------|---|---------------|-----------------------------|-----|---------------------------| | 198 MANAMASSIS MAN 2 Pydro 1.7 1.4 1.0 1.5 1.0 2.7 2.5 2.4 1.6 1.4 1.5 1.5 1.0 2.7 2.5 2.4 1.6 1.4 1.5 | | | | 2 | Hydro | 9.1 | | | 5.6 | | | | | 9.6 | | | 130 BRASPAW SPW 2 Nybo 1.1 1.2 1.2 1.1 1.2 1.3 2.2 2.4 2.6 1.2 1.1 1.2 1.3 1.3 2.3 2.4 2.6 1.2 1.1 1.2 1.3 1.3 2.3 2.4 2.6 1.2 1.1 1.2 1.3 2.3 2.4 2.6 1.2 1.3 1.3 2.3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.3 3.5 3 | | | | | | | | | | | | | | | | | 100 BAZEALI | | | | | | | | | | | | | | | | | 131 BIOLONN BIG 2 hydro 14.9 12.8 5.8 12.5 10.8 8.5 13.3 9.7 7.9 18.0 14.0 11.1 13.2 BIOLONN BIOLO | | | | | | | | | | | | | | | | | 132 BG AMPORT | | | | | | | | | | | | | | | | | 133 SARATCHEWAN IMPORT 1500 150 | | | | 2 | | | | | | | | | | | | | 134 NORTHERN PRAIRE FOWER PROJECT NPPI Sas 20.9 4.3 0.4 12.0 6.9 4.0 37.8 8.8 1.6 43.6 10.9 11.2 13.8 GRANDE RENTRE COPPURE CENTRE COPPUR | | | | | | | | | | | | | | | | | 135 GARADE PRARIE EXPOPWER CRITTE GPEC 2 Cogen 17.8 16.5 16.8 14.2 17.4 17.0 7.0 11.5 6.8 14.7 17.6 17.7 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.0 17.0 11.5 6.8 14.7 17.6 17.7 17.8 | | | | | | | | | | | | | | | | | 198 SHELL CAROLINE | | | | | | | | | | | | | | | | | 137 CAVALEER ECOI 2 Co-Cycle 63.9 48.4 22.4 69.2 62.1 38.3 83.1 41.5 15.5 72.0 52.8 19.7 | | | | 2 | | | | | | | | | | | | | 138 CARSELAND TCO1 2 Co-gen 22.4 21.9 20.9 22.8 21.8 21.6 21.4 21.6 22.2 21.0 20.6 20.8 20.8 20.8 21.8 21.5 20.5 20.8 20.8 20.8 21.8 21.5 20.8 20.8 21.8 21.5 20.5 20.8
20.8 | | | | | | | | | | | | | | | | | 139 BAZAG | | | | | | | | | | | | | | | | | 140 EMMAX CALGARY NERROY CENTRE STO CES 2 Co-Cycle 34.2 32.6 7.7 42.0 51.8 23.5 100.9 39.2 5.7 117.7 88.0 65.6 141 EMMAX CALGARY NERROY CENTRE STO CES 2 Co-Cycle 5.5 7.9 1.7 12.0 13.9 5.9 26.8 10.6 1.6 33.0 22.2 17.0 142 CITY OF MEDICINE HAT | | | | | | | | | | | | _ | | | | | 141 EMMAX CALGARY ENERGY CENTRE STO CESS 2 Co-Cycle 8.5 7.9 1.7 12.0 13.9 5.9 28.8 10.6 1.8 33.0 23.2 17.0 142 CITYOF MEDICINE HAT COMH 2 Cas 10.8 11.4 2.6 12.4 15.9 10.7 143 ATCO VALLEY VEW 2 VWW2 Clas 0.8 0.4 0.2 0.1 3.2 0.6 0.0 0.0 0.0 0.0 0.1 144 SUMMT CROSSFELD ENRICY CENTRE CRS1 CRS2 Clas Crs | | | | | | | | | | | | | | | | | 142 OTY OF MEDICRE HAT | | | | | | | | | | | | | | | | | 143 ATCO VALLEY VEW 2 | | | | | | | | | | | | | | | | | 144 SUMMIT CROSSFELD ENERGY CENTRE CR51 | | | | 2 | | | | | | | | | | | | | 145 SUMMIT GROSSFIELD ENERGY CENTRE GR\$2 | | | | | | | | | | | | | | | | | 146 SUMMIT CROSSFIELD ENERGY CENTRE CRS3 Gas 8.4 5.0 0.9 22.1 11.8 2.1 39.3 39.3 39.3 12.1 0.0 0.0 0.0 0.0 | | | | | | | | | | | | | | | | | 147 NOVA_OFFRE | | | | | | | | | | | | | | | | | 148 REDWATER TOO2 | | | | | | | | | | | | | | | | | 149 DOW GTG DOW GEN15M 2 Co-gen 60.8 45.9 21.4 54.2 46.2 26.6 40.9 30.5 17.4 52.3 42.0 19.0 | | | | | _ | | | | | | | | | | | | 150 CLOVER BAR1 ENC1 Gas | | | | | | | | | | | | | | | | | 151 CLOVER BAR 2 ENC2 Gas 18.5 10.2 1.3 1.7 0.1 0.0 2.5 3.9 0.0 20.1 11.8 0.3 | | | | 2 | | | | | | | | | | | | | 152 CLOVER BAR 3 ENC3 Gas 11.1 10.3 1.1 50.3 53.9 16.9 70.7 70.7 70.7 70.7 3.9 5.5 0.1 | | | | | | | | | | | | | | | | | 153 PRIMPROSE PRI 2 Co-gen 1.7 1.7 1.6 1.4 1.3 1.3 1.2 1.7 1.9 1.2 1.3 1.2 1.3 1.2 1.3 | | | | | | | | | | | | | | | | | 154 MEG ENERGY MEG1 Co-gen 55.5 73.1 75.9 72.2 69.2 71.1 65.6 65.6 65.6 63.9 25.4 20.7 155 MKKAY RIVER MKRC 2 Co-gen 2.7 2.4 2.4 2.1 2.3 2.3 2.3 2.2 2.1 2.3 2.1 2.0 156 SUNCOR MILLENIUM SCR1 2 Co-gen 40.7 43.6 39.7 42.4 36.5 34.4 30.8 24.1 19.0 31.2 30.4 23.6 157 FOSTER CREEK G1 EC04 2 Co-gen 3.2 3.3 3.4 2.8 3.1 3.4 2.7 2.2 2.8 1.4 2.5 2.8 158 MUSKGG MKR1 2 Co-gen 2.9 2.7 2.0 19.3 22.7 19.6 16.4 23.1 19.5 14.3 26.9 24.9 18.7 159 FORTISALBERTA AL-PAC PULP MILL Project837_1 GEN Gas 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 160 POPLAR HILL PH1 2 Gas 0.0 0.0 0.0 3.1 1.1 0.1 0.2 0.7 0.0 1.9 0.1 161 NORTHSTONE ELMWORTH NPC1 2 Co-gen 1.3 0.4 0.0 1.6 1.3 0.3 3.5 0.4 0.0 2.9 0.6 0.0 162 BEAR CREEK G1 BCRK 2 Co-Cycle 5.5 2.7 1.0 8.6 7.1 3.8 8.2 1.4 0.0 7.3 2.0 0.0 163 BEAR CREEK G2 BOR2 2 Co-Cycle 5.5 2.7 1.0 8.6 7.1 3.8 8.2 1.4 0.0 7.3 2.0 0.0 164 VALLEYVIEW VVW1 2 Gas 0.0 0.2 0.1 3.6 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 165 RAINBOW 5 RB5 2 Gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 167 RAINBOW 5 RB5 2 Gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 168 RAINBOW 3 RB3 2 Gas 0.0 0 | | | | _ | | | | | | | | | | | | | 155 McKAY RIVER MKRC 2 Co-gen 2.7 2.4 2.4 2.1 2.3 2.3 2.2 2.1 2.3 2.1 2.0 | | | | 2 | | | | | | | | | | | | | 156 SUNCOR MILLENIUM SCR1 2 Co-gen 40.7 43.6 39.7 42.4 36.5 34.4 30.8 24.1 19.0 31.2 30.4 23.6 157 FOSTER CREEK G1 EC04 2 Co-gen 3.2 3.3 3.4 2.8 3.1 3.4 2.7 2.2 2.8 1.4 2.5 2.8 1.5 1.5 158 MUSKEG MKR1 2 Co-gen 29.6 27.0 19.3 22.7 19.6 16.4 23.1 19.5 14.3 26.9 24.9 18.7 159 FORTISALBERTA AL-PAC PULP MILL Project837_1_GEN Gas 0.0 0.0 0.0 0.3 0. | | | | _ | | | | | | | | | | | | | 157 FOSTER CREEK G1 EC04 2 Co-gen 3.2 3.3 3.4 2.8 3.1 3.4 2.7 2.2 2.8 1.4 2.5 2.8 158 MUSKEG MKR1 2 Co-gen 29.6 27.0 19.3 22.7 19.6 16.4 23.1 19.5 14.3 26.9 24.9 18.7 159 FORTISALBERTA AL-PAC PULP MILL Project837 GEN Gas 0.0 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 160 POPLAR HILL PH1 2 Gas 0.0 0.0 0.0 0.0 3.1 1.1 0.1 0.2 0.7 0.0 1.9 0.1 0.0 161 NORTHSTONE ELMWORTH NPC1 2 Co-gen 1.3 0.4 0.0 1.6 1.3 0.3 3.5 0.4 0.0 2.9 0.6 0.0 162 BEAR CREEK G1 BCRK 2 Co-Cycle 5.5 2.7 1.0 8.6 7.1 3.8 8.2 1.4 0.0 7.3 2.0 0.0 163 BEAR CREEK G2 BCR2 2 Co-Cycle 15.0 13.5 12.6 15.3 12.4 12.0 16.9 14.4 14.2 11.7 12.3 11.6 164 VALLEYVIEW VVW1 2 Gas 0.0 0.2 0.1 3.6 0.6 0.2 0.0 0.0 0.0 0.0 0.6 0.9 165 RAINBOW 5 RB5 2 Gas 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 166 RAINBOW 1 RB1 2 Gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 167 RAINBOW 2 RB2 2 Gas 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 168 RAINBOW 3 RB3 2 Gas 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 169 RAINBOW 4 RL1 2 Gas 7.4 2.8 0.9 9.6 3.6 2.4 1.8 1.6 3.3 22.3 3.6 2.0 170 FORT NELSON FNG1 2 Gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 172 STURGEON ST2 Gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 172 STURGEON 2 ST2 Gas 0.0 | | | | | | | | | | | _ | | | | | | 158 MUSKEG MKR1 2 Co-gen 29.6 27.0 19.3 22.7 19.6 16.4 23.1 19.5 14.3 26.9 24.9 18.7 159 FORTISALBERTA AL-PAC PULP MILL Project837_IGEN Gas 0.0 0.0 0.0 0.0 0.3 | | | - | | | | | | | | | | | | | | 159 FORTISALBERTA AL-PAC PULP MILL | | | | | | | | | | | | | | | | | 160 POPLAR HILL | | | | | | | | | | | | | | | | | 161 NORTHSTONE ELMWORTH | | | | 2 | | | | | | | | | | | | | 162 BEAR CREEKG BCRK 2 Co-Cycle 5.5 2.7 1.0 8.6 7.1 3.8 8.2 1.4 0.0 7.3 2.0 0.0 163 BEAR CREEKG 2 BCR2 2 Co-Cycle 15.0 13.5 12.6 15.3 12.4 12.0 16.9 14.4 14.2 11.7 12.3 11.6 164 VALLEYVIEW VW1 2 Gas 0.0 0.2 0.1 3.6 0.6 0.2 0.0 0.0 0.0 0.0 0.6 0.9 0.1 165 RAINBOW 5 RB5 2 Gas 0.3 0.3 0.3 2.4 0.7 0.5 3.8 0.4 0.2 6.3 1.4 0.3 166 RAINBOW 1 RB1 2 Gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 167 RAINBOW 2 RB2 2 Gas 0.1 0.0 0.0 4.6 0.5 0.2 0.3 0.2 0.0 2.1 0.3 0.1 168 RAINBOW 3 RB3 2 Gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 169 RAINBOW 3 RB3 2 Gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 170 FORT NELSON FNG1 2 Gas 8.4 4.9 4.0 11.1 9.7 5.7 20.3 3.4 0.1 15.1 3.7 0.5 171 STURGEON 1 ST1 Gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 172 STURGEON 2 ST2 Gas 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 170 FORT NELSON ST2 Gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 170 FORT NELSON ST2 Gas 0.0 | | | | | | | | | | | | | | | | | 163 BEAR CREEK G2 BCR2 2 Co-Cycle 15.0 13.5 12.6 15.3 12.4 12.0 16.9 14.4 14.2 11.7 12.3 11.6 164 VALLEYVIEW VW1 2 Gas 0.0 0.2 0.1 3.6 0.6 0.2 0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | | | | | | | | | | | | | | | | | 164 VALLEYVIEW VWV1 2 Gas 0.0 0.2 0.1 3.6 0.6 0.2 0.0 0.0 0.0 0.6 0.9 0.1 165 RAINBOW 5 RB5 2 Gas 0.3 0.3 0.3 2.4 0.7 0.5 3.8 0.4 0.2 6.3 1.4 0.3 166 RAINBOW 1 RB1 2 Gas 0.0 | | | | | | | | | | | | | | | | | 165 RAINBOW 5 RB5 2 Gas 0.3 0.3 0.3 2.4 0.7 0.5 3.8 0.4 0.2 6.3 1.4 0.3 166 RAINBOW 1 RB1 2 Gas 0.0 0 | | | | | | | | | | | | | | | | | 166 RAINBOW 1 RB1 2 Gas 0.0 | | | | | | | | | | | | | | | | | 167 RAINBOW 2 RB2 2 Gas 0.1 0.0 0.0 4.6 0.5 0.2 0.3 0.2 0.0 2.1 0.3 0.1 168 RAINBOW 3 RB3 2 Gas 0.0 | | | | | | | | | | | | | | | | | 168 RAINBOW 3 RB3 2 Gas 0.0 0. | | | | | | | | | | | | | | | | | 169 RAINBOW 4 RL1 2 Gas 7.4 2.8 0.9 9.6 3.6 2.4 1.8 1.6 3.3 22.3 8.6 2.0 170 FORT NELSON FNG1 2 Gas 8.4 4.9 4.0 11.1 9.7 5.7 20.3 3.4 0.1 15.1 3.7 0.5 171 STURGEON 1 ST1 Gas 0.0 0. | | | | | | | | | | | | | | | | | 170 FORT NELSON FNG1 2 Gas 8.4 4.9 4.0 11.1 9.7 5.7 20.3 3.4 0.1 15.1 3.7 0.5 171 STURGEON 1 ST1 Gas 0.0 | | | | | | | | | | | | | | | | | 171 STURGEON 1 ST1 Gas 0.0 | | | | | | | | | | | | | | | | | 172 STURGEON 2 ST2 Gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | ^{*} Capacity is determined as per AESO rules for the periods defined.