Tutorial on GSO Preparation Based on AESO Rules

Rob Baker Ashikur Bhuiya Operations Forecasting AESO July 05, 2005

Background

- AESO is preparing 2006 Loss Factors for implementation on January 1, 2006.
- Loss Factory Methodology via the AESO Rules requires seasonal base cases for determining the loss factor of each generator.
- Twelve cases of data (four seasons with a High, Medium and Low level per season) are developed to evaluate loss factors.
 - Nine cases (Summer, Winter, and Fall (H,M,L) have been evaluated and sent to owners of generation.
- 12 seasonal base cases are prepared from Net-To-Grid
 (NTG) amount at the Point of Supply (POS). ISD's included.
- NTG amount are obtained from AESO metering database and processed.

Background

- # Based on AESO Rules.
- **#** Obtain Alberta load data for the most recent 12 months.
- **#** Organize the load data according to seasons.
- **#** Seasons are defines as
 - Winter (December February)
 - Spring (March May)
 - **#** Summer (June August)
 - # Fall (September November)
- **#** Create Load Duration Curve (LDC) for each season.
- **#** Obtain High, Medium and Low segments from LDC.

High, Medium and Low segments from LDC.

Load Duration Curve and Determination of H₂ and H₃
 M₄ is a non-zero value

ALBERTA ELECTRIC SYSTEM OPERATOR

- Why 3 segments only
 - To comply with the rules in Alberta, the three segments results in an optimized and efficient result.
- **=** 3 segments represents linearized simulated LDC
- For each of the segment obtain the area under the straight line and duration curve Fc.
- **#** Find the difference between these two areas (A_x) .
- **=** Find all three A_x s and add their squares $(A_1^2 + A_2^2 + A_3^2)$.
- **=** Find H₂ and H₃ so that the sum of the squares of A_xs becomes minimum ,i.e. Minimize $(A_1^2 + A_2^2 + A_3^2)$.

Preparation of GSO Step 2 – Seasonal Load Duration Curve

ALBERTA ELECTRIC SYSTEM OPERATOR

Preparation of GSO Step 2 – H, M, and L breakdown

		MW		
	Hr	Actual	Avg	Percentile
H1	1	8578		100.0%
H2	150	8225	0	93.3%
H3	2100	6455	0	4.9%
H4	2208	6017	0	0.0%

ALBERTA ELECTRIC SYSTEM OPERATOR

- LDC is used to obtain the sequence of hours in a season according to load sorted in descending hours.
- INTG data of each generator for each season are stored chronologically.
- INTG data of each generator for each season are sorted according to the sequence of hours obtained from LDC.
- ALBERTA ELECTRIC SYSTEM OPERATOR
- Segments obtained from LDC analysis is used to find average NTG for each MPID for the High, Medium and Low segments.

Conclusion

- Analysis consistent with Rule to obtain capacity values for base cases
- It is possible to have output values less than the minimum generator output
- Capacity values calculated are truly historic with no forward maintenance embedded
- AESO has sent 9 values to owners for signoff for 3 seasonal cases.
- AESO will send 3 numbers for final seasonal case (Spring) in mid July.

Further Actions

- AESO will correct headings to read 'PAvail'
- Confirm with companies we are contacting the right people and they know the intent of the request
- Signoff confirms best information to build base cases and calculate loss factors